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Coefficients of Inbreeding and Homozygosity
in Recurrent Selection: The One-Locus Case

R. L. CAIN! and K. HINKELMANN

Virginia Polytechnic Institute, Blacksburg, Virginia (USA)

Summary. Ior selection programs which can be represented by successive self-select-intercross cycles (such as re-
current sclection or reciprocal recurrent selection) general recurrence formulae are developed for obtaining the cocffi-
cients of inbreeding and homozygosity in cach cycle. The formula for the coefficient of inbreeding is a generalization of a
result given by Sprague, ef al. (1952). It is shown that the cocfficient of parentage in the source population has a major
effect on the coefficient of inbreeding in the following cycles as does the population size. The relationship of both types
of coefficients and their importance in practical work are discussed.

1. Introduction

By recurrent selection (RS) is meant a basic
selection pattern which involves self-select-intercross
cycles. There are four basic types of RS as distin-
guished by the manner in which the desirable indi-
viduals are located:

1. Simple recurrent selection (SRS): individuals are
divided into groups of “discards” or “selects” solely
on the basis of their own phenotypes (Jenkins 1935,
1940)).

2. Recurrent selection for general combining ability
(RSGCA): plants or animals are classified on the basis
of the phenotypes of their progeny when crossed with
a heterozygous tester stock (Jenkins 1935).

3. Recurrent selection for specific combining ability
(RSSCA): plants or animals are classified on the basis
of the phenotypes of their progeny when crossed with
a homozygous tester stock (Hull 1945).

4. Reciprocal recurrent selection (RRS): selection
for general combining ability is made simultaneously
in two populations by observation of the phenotypes
of progeny resulting from crosses involving two hetero-
zygous source populations (Comstock, ¢f al. 1949 and
Robinson, et al. 1955).

A program of RS enables the experimenter to
maintain a level of inbreeding which is lower than
that inherent in many other types of breeding pro-
grams; thus it is possible to continue effective selec-
tion progress over a longer period of time if the select-
ed trait 1s controlled by many loci. If the trait is
controlled by only a few loci and selection is artificial
(thus being relatively intense) and if selection is
effective, then RS will result in genetic advance for
only a few cycles. However both inbreeding and
homozygosity in state have an increasing effect upon
the progress of a population under selection as the
intensity of selection increases, since genetic advance
is dependent upon the variability present in the
population and with intense effective selection, gene-
tic fixation is rapidly approached. Thus, homozygo-
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sity by descent and homozygosity in state both
contribute to the same end result: genetic fixation and
cessation of selection advance. RS was developed as
a method whereby plant breeders especially could
utilize the most intense form of inbreeding, selfing,
to select effectively the superior individuals and retain
their superior genes in the gene pool, while alternately
utilizing the least intense form of inbreeding, crossing
in all possible combinations, to maintain the genetic
variability necessary to enable continued selection
progress over several sclection cycles.

SRS 1s effective only if the character being selected
has high heritability and if the character is governed
by a relatively large number of loci (if more than two
or three cycles are planned). RSSC.A requires sound
judgment as to the value of the tester stock: a poor
choice will invalidate the results of many years of
experimentation, since a single homozygous tester
stock must be chosen initially and perpetuated by
selfing for use at every other year of the selection
cycle. It is generally concluded that SRS, RSSCA,
and RSGCA are best suited to their own specific
purposes, while RRS enhances the genetic diversity
of breeding stocks and offers the most advantages in
an overall program of selection in crop plants, parti-
cularly when selection involves yield as one of the
selected characteristics and when the crop involved is
known to show heterosis upon crossing pure lines.

Illustrated in I'igure 1 is the mating pattern for
SRS, RSSCA, RSGCA and RRS. Tollowing the
notation of Shikata (1966) the four basic components
of pedigree may be observed in Figure 1:

(i) the path A4 —F illustrates selfing;

(i) the path EF—I illustrates that phase of
intercrossing for which each offspring is a result of
a cross of two parents;

(iii) the path E—I1K illustrates that phase of
intercrossing for which a single parent contributes
genetic material to more than one offspring or line,
and

(iv) the path L—IK—0Q-—V illustrates the
combining of the 3 components listed above to form
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Fig. 1. Basic mating pattern for all four types of recurrent
sclection, showing only one offspring (of an assumed equal
number of offspring) per mating

a closed loop. Note that in the RS system a closed
loop encompasses three generations.

The very development of the RS procedure as one
which minimizes inbreeding in a selection program
indicates the plant breeder’s concern regarding the
effect of inbreeding on selection progress. In some
cases in practice, pedigree information is available;
in others, maintenance of pedigree records is not
feasible. In all cases, continuation of selection effec-
tiveness depends upon the degree of heterozygosity in
the breeding population; thus the breeder is concern-
ed with measuring not just the degree of inbreeding
but instead the overall homozygosity in a popula-
tion under RS.

Kempthorne (1960) comments: “The calculation of
mmbreeding coefficients may be misleading in a popu-
lation under selection;” and Falconer (1960) obser-
ves that: “the coefficient of inbreeding is a measure of
the state of dispersion [of gene frequencies] only in
the absence of selection.” Ifalconer goes on to explain
that there must be a distinction made between the
state of dispersion of gene frequencies (affecting
additive variance, inbreeding depression, etc.) and
the coefficient of inbreeding as computed from the
population size or pedigree relationships, since under
selection the actual dispersion will be less than that
indicated by . I'alconer is referring to selection
which favors the heterozygotes, such as natural selec-
tion operating during inbreeding depression. How-
ever, similar comments apply in the case of intense
directional selection.

TFor example consider a special case in which gene
fixation occurs under selection simultaneously with
an inbreeding coefficient of zero. In simple recurrent
selection if the selected trait depends on only one lo-
cus, and the frequency of the favorable allele is 50%,
or more, then in the absence of complete dominance
fixation would occur with the first generation for
a selection intensity of 259%, or less. Note, however,
that the inbreeding coefficient is only one-half upon
fixation, assuming the open-pollinated source popu-
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lation that is usually the case. However the complete
RS selection cycle is self-select-intercross, so that
though upon selfing the source population, I = 1/2,
still after intercrossing to complete the cycle, F' = 0
again, even in the presence of genetic fixation. In
this special case, selection has — on the basis of the
parent plants’ observed genotypes — eliminated all
heterozygotes and all recessive homozygotes and
even though F = 1/2 in the selected selfed seeds, gene-
tic fixation with F = 0 results upon intercrossing at
the close of the cycle.

In general, inbreeding promotes homozygosis;
likewise directional selection promotes homozygosis in
the presence of partial or complete dominance.
However, when combined, each inhibits the action of
the other in a recurrent program; directional selec-
tion seeks to fix the favorable allele, while in the
selfing phase 259, of the heterozygotes segregate as
homozygous for the unfavorable allele; inbreeding
increases the proportion of homozygous loci only to
have it decreased as selection removes part or all of
the recessive homozygotes (unless, of course, the
selection intensity is such that a large proportion of
the heterozygotes also are discarded). Thus one must
approach the interpretation of the inbreeding coeffi-
clent with caution when selection is involved; and if
the point of interest is the degree of homozygosity of
the population, then a homozygosity index should
be obtained rather than any measure of degree of
inbreeding.

If'urthermore, if selection is effective, then the
superior individuals in the source population will be
represented more often in the ancestry of successive
selected progenies than will be the inferior indivi-
duals; and also the various lines selected in any given
cycle will tend to be more or less inbred according to
the number of exceptional performers in their an-
cestry. This tendency of genetically superior indi-
viduals to be most inbred results in a reduction of
effective population size under intense selection; see
Robertson (1961) for further details. As a measure of
inbreeding in a given cycle, what is needed is an
average inbreeding coefficient for the intercross
population (since this marks the termination of a
breeding cycle) of a given cycle of RS.

This paper presents, for the one-locus case, the
derivation of recurrence formulae for an average
inbreeding coefficient and an average coefficient of
parentage in the nth cycle of an RS program, and
develops an index with which to measure the total
degree of homozygosity in a population under
recurrent selection. For the case of m independently
segregating loci, to obtain the average inbreeding
coefficient, the coefficient of parentage, or the index
of total homozygosity for a given cycle, one may
simply raise the appropriate one-locus coefficient to
the power m. Extension of the result to m loci with
linkage will appear in a sequel paper.
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2. Assumptions and Definitions

1t is assumed that the individuals in the breeding
populations involved are diploid with only two alleles
per locus, are capable of self fertilization, and breed
in nonoverlapping generations. Any possibility of
differential viability is ignored and a constant number
of offspring per mating (typified by a single line) is
assumed.

The inbreeding coefficient I is defined as the
probability that two genes at one randomly chosen
locus of a diploid individual are identical by descent;
and the coefficient of parentage 7 is defined as the
probability that two genes, drawn from the same locus
of two different randomly chosen individuals, are
identical by descent (see Malécot 1948).

Thus, given an individual X with genes x; and x,
at a given locus, Fy = P (x; = %x,); similarly 7y y =
=1/4 [P (% = y) + P @ =)+ P =1y)+
-+ P {x, = v,)]. lurther, if X 1s the offspring of
a cross of the individuals 4 and B and Y is the off-
spring of a cross between individuals C and D then
7xy may be denoted 7.4, pcxp and if £ is an offspring
of a cross between X and Y, then F, = ry,. FU:#
and 0%, where § = 0,1, 2and &k =1,2,...,#, will
be used to denote the coefficients of inbreeding and
parentage, respectively, in the jth generation of the
kth recurrent cycle. #® and »®, where k = 1,2,...,#,
will be used to denote the degree of inbreeding and
parentage in the terminal (i.e., the second) generation
of the kth recurrent cycle, and will be used inter-
changeably with F2# whenever emphasis of the
generation involved is unnecessary (See Section 6 for
further discussion of the relationship between these
single-superscripted and double-superscripted quan-
tities).

3. Derivation of Recurrence Formulae for a Finite
Population under Random Selection

Consider a population which is reproducing under
the mating pattern of RS, as illustrated by Figure 1.
By the assumption of equal numbers of progeny and
no differential viability, there is no loss of generality
in tracing the progress of the population assuming
one offspring (or line) per mating.

I'rom Figure 1, it is apparent that even upon assu-
ming one offspring per mating, only for the unrealistic
source population sizes of N = 2 and N = 3 will the
population size remain within manageable limits un-
der no selection. A source population of size N, in
generation 2 has expanded to size N(IN — 1)/2, in
generation 4 has M (M —1)/2, where M =N(N —1)/2,
individuals, etc.

Thus for purposes of investigating the change in
the inbreeding coefficient, consider the progress of
this population assuming that a population size of N
(the size of the initial source population) is maintain-
ed through an arbitrary number of generations by
random selection of N out of the N(N — 1)/2 off-
spring in each cycle.
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The assumption of random selection from a popu-
lation of all possible intercrosses is equivalent to the
assumption of random mating. Thus, the calculation
of F in a given generation is similar to that given by
Wright (1921) and Malécot (1948) and summarized
by Kempthorne (1957), except that in this case the
mating pattern alternates selfing and intercrossing in
successive generations.

Given any diploid individual X in a certain cycle of
arecurrent selection mating system, and given that X
has genes x; and x,, if x; and x, are identical by des-
cent, then either they resulted by descent from one
out of a possible N ancestors who was a common
parent to half sibs whose selfed offspring subsequently
crossed to produce X, or else they came separately
from the parents not common to the half sibs whose
selfed offspring crossed to produce X and were
identical by descent in those two parents. As an
illustration, consider any individual (say X in Figure 1)
in generation 2 of cycle » + 1 from the source popu-
lation: tracing the closed loop involved (from X to
Q — T to K — N to H), one observes that both
genes of this individual (X) could be traced to one
common ancestor (H) in generation 1 of cycle n with
probability 1/N (1/4, in this case). On the other hand,
if the two genes did not come from a common ancestor,
an event that has probability 1 - 1/N (i.e., 3/4),
then they must have descended simultaneously from
two separate ancestors (i.e., one only from each £, G,
or H). Thus, for a mating pattern similar to those
illustrated by Figure 1, in which alternate genera-
tions have been produced by intercrossing, if one
assumes N lines in the source generation of cycle #,
then

-
Fnt1) — 0, n41) — p2,n) — 1 M -+
N 2

1
- (2,n)
+(1 N) Fe (3.1)
reflecting the effect of finite population size N, and

Fit,nt1) :% (1 4 Fany, (3.2)

independent of the value of N.
In terms of the panmictic index P =1 — F,

et — (1 — L\ pew o 1 pa,w '
pe (1 N)P 4 P, (3.3)

and
Plya+1) % pen (3-4)

which when combined with (3.3) yields
i) = (1 — L) pem 1 1 pea-n ¢
P = (1= ) P g P, 69

or
1

v e

1
n+1) — o (1)
P = (1 N)P + (3.6)
Again it should be emphasized that generations
0 and 2 are defined to be those produced by inter-
crossing. As shown by (3.4), the panmictic index of
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Table 1. Progress of the panmictic index (PW) through 15 cycles of vecurvent selection for vavying population sizes (N) and
varying values of the panmictic index in the souvce population (P(0))

Roots of Quadratic Recurrent Cycle Number ()

N e P(0) S - o e
" 7y 2 3 4 5 6 8 9 10 11 12 13 14 15

4 +4-.8257 —.0757 1.0 .81 67 .55 46 .38 .31 .26 .21 18 15 .12 A0 .08 .07
0.8 65 .54 .44 .37 30 .25 .2t 17 14 .12 10 .08 .06 .05

0.6 49 40 .33 .27 .23 19 A5 43 11 .08 07 0.6 .05 04

0.4 320 .27 22 48 A5 42 10 .08 07 W6 0.5 .04 .03 .03

0.2 A6 13 A1 09 .08 .06 .05 .04 04 .03 .02 02 02 .01

5 +.8583 —.0583 1.0 .85 .73 .63 .54 46 .40 34 29 .25 .22 18 6 .14 12
0.8 68 .58 .50 .43 .37 .32 .27 .23 .20 A7 A5 13 11 .09

0.6 51 44 36 .32 .28 .24 .20 .18 .45 43 A1 .09 .08 .07

0.4 .34 .20 .25 22 A8 16 .14 42 10 .09 .07 .06 .05 .05

0.2 A7 A5 A3 41 .09 .08 W7 .06 .05 .04 .04 .03 02 .02

10 +.9270 —.0270 1.0 93 .86 .79 .74 .68 .63 .59 .54 .50 .47 .43 .40 .37 .35
0.8 74 60 .64 .50 .55 .51 47 44 40 .37 .35 .32 .30 .28

0.6 .56 .51 .48 .44 41 .38 .35 .33 .30 .28 .26 .24 .22 .21

0.4 37 .34 .32 .29 .27 .25 .23 .22 .20 .49 A7 6 a5 14

0.2 49 A7 A6 A5 A4 A3 12 41 10 .09 .09 W08 .07 .07

25  +-.9703 —.0103 1.0 97 94 91 .89 .86 .83 .81 .79 .76 .74 .72 .70 .68 .66
0.8 78 .75 .73 7t .69 .67 .65 .63 .61 .59 .57 .56 .54 .52

0.6 .58 .56 .54 .53 .52 .50 49 47 46 44 .43 42 .41 .39

0.4 .39 .38 .37 .35 .34 .33 .32 .31 .30 .30 .29 .28 .27 .26

0.2 19 19 8 A8 a7 A7 46 46 A5 A5 .14 14 14 13

100 +.9925 —.0025 1.0 99 99 98 97 96 .96 .95 .94 .93 .02 .92 .91 .91 .90
0.8 79 .79 .78 .78 .77 .76 .76 .75 7S 74 .74 73 .73 .72

0.6 .60 .50 .59 58 .58 .87 .57 .56 .56 .56 .55 .55 .54 .54

0.4 40 .39 .39 .39 .39 .38 .38 .38 .37 .37 .37 .37 .36 .36

0.2 200 .20 .20 .19 A9 18 A8 8 18

any generation produced by selfing is half that of the
parent generation, regardless of population size.
However, the course of the panmictic index over time
in terms of either generations or RS cycles is reflected
entirely by (3.5) or (3.6) respectively, since these
expressions combine (3.3) and (3.4).
Thus for n >1,

P = a7  ay r?

where #; and 7, are roots of the quadratic

& — (’1 - 1%) X — ;1'1;\? =0 3.7)

obtained from (3.0) following the usual procedure for
solving difference equations, and 4, and 4, are deter-
mined by the parameters in the source population.

Table 1 indicates the roots of the quadratic equa-
tion for varying values of N and then, given values of
PV varying from 0.2 through 1.0, traces the progress
of P from the second through the fifteenth recur-
rent cycles (through thirty breeding generations).
Since it is immediately preceded by intercrossing,
P) = PO, Only in or following the generation
which terminates closed loops in the pedigree is it
possible to reduce the degree of panmixia: i.e., no
sooner than P?.

The steady progress of P® toward an eventual
value of zero is quite evident for small N. These
data give an indication of the effect of finite popula-
tion size and also the effect of degree of panmixia in
the source population of a recurrent breeding pro-

A9 .

A9 19

gram, assuming a single gene model and no artificial
selection, over a period of 15 recurrent cycles. Ii-
gure 2 illustrates the effect of population size upon
the progress of the population for %9 = 5 and
PO =-8.

4. Derivation of Recurrence Formulae for F(2) in
a Finite Population under Effective Directional
Selection

Consider Figure 3, which gives a possible selection
pattern. Referring to the definitions of the four basic
methods of RS given in Section 1, one may observe
that if the selection of lines E, F, G, and H (or O, I,
), and R in the second cycle) in I'igure 3 is based upon
observation of phenotypes, then SRS is involved;
il their selection is based upon observation of the
phenotypes of the progeny of 4, B, C, and D (or of
1, ], L, and M in the second cycle) when crossed with
a homozygous tester stock (heterozygous tester stock)
then RSSCA (RSGCA) is involved. With RRS, for
each of the two populations, a mating series is con-
ducted such as illustrated by Figure 3; and selection
of, say individuals E, F, G, and H (or O, P, Q, and R
in the second cycle), in the first population is based
upon the observed phenotypes of progenies resulting
from the outcrossing of 4, B, C, and D (or I, J, L,
and M) with a random sample of individuals (rom
the second population involved. Since, with RRS,
the selection of lines is based on observation of the
offspring of an outcrossing of these lines with a gene-
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tically unrelated population, the tendency to select
the more inbred lines in either of the two popula-
tions is reduced. Thus, with RRS, one may expect
the degree of inbreeding to be less, even though the
procedure for calculating it is identical to that used
in the case of the other three types of RS.

The following derivation is illustrated by Figure 3,
though it is not restricted by the fact that IMigure 3
specifies a particular case. Let a;, 2 =1,..., N, be
the number of times each line saved in cycle 1 is
represented in the parents of progeny saved in cycle 2,
where N is the total number of lines saved. Let
b; = a; if a; > 2, let 5" b; denote the sum of all 3,,
and let >/ a; denote the sum of all a; == 1. Then

N
2N =Sa;=3'b+ 5 a,
i =1

i=
the inbreeding coefficient in the population is deve-
loped in terms of a weighted average of the inbreeding
coefficients of the individuals comprising the popu-
lation; because of the regularity of the breeding pat-
tern, some population results may be derived in
terms of corresponding results based on individual
pedigrees.

In developing the results of this section, the follow-
ing notation and definitions will be observed (in
addition to those specified in Section 2):

I’y denotes the inbreeding coefficient for the indi-
vidual X;

#xy denotes the coefficient of parentage between X
and Y;

K, denotes the inbreeding coefficient of an indivi-
dual which results from a closed loop pedigree;

K, denotes the inbreeding coefficient of an indivi-
dual which results from a single line pedigree (not
a closed loop);

K7 denotes the coefficient of relationship between
two individuals who have a common parent; and

K, denotes the coefficient of relationship between
two individuals who do not have a common parent.

If » = 0 in the source population, then the only
possible contribution to the degree of inbreeding in
generation 2 of cycle 2, 2, is that made by lines
represented two or more times in the first generation
of any cycle. If » = 0 in the source population, then
any line represented only once, such as H in Figure 3,
cannot contribute to F(22. Notice in Figure 3 that in
the second generation of the second cycle, W is the
only offspring that does not terminate a closed loop
since the ancestor J results from the cross of E and &
and the ancestor M is F x H. The offspring S, T, U,
V, and X can be traced to loop ancestors E, F, F, G,
and F, respectively, reflecting the fact that E is
represented twice in generation 2 of cycle 1, F is
represented three times, and G twice. By the above
definitions, the value of the contribution to F%2) of
individuals who are loop ancestors is K, since the
size of the inbreeding coefficient of the closed loop
offspring results from the possibility of transmission

In the derivation,
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Fig. 2. Comparison of P(#) values for varying initial population
sizes and fixed initial values of the panmictic index P(0)

Cycle Generation
(0) A ? 0g
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Intercross

1 m

(20 (0) 1
2 {1} 0,

Self
Select

Intercross

T° U e w*
Selected individuals {lines)
are shaded in generation 1
of each cycle .

(2) s

Fig. 3. A possible selection pattern illustrating derivation of
the average inbreeding coefficient in the second cycle of recur-
rent selection

by the loop ancestor of identical genes through both
sides of the loop. Similarly the contribution of H,
as measured by Fy, is denoted K,.

All lines represented exactly once in the first gener-
ation of any cycle (such as H in Figure 3) will contri-
bute K, 3 a; to F»2), Since any two lines in the
selected population of the second cycle can have at
most one common ancestor in the first cycle, any line
represented twice (such as E) supplies exactly one
closed loop and contributes 1 X K; to the inbreeding
coefficient; any line represented exactly three times
(such as I7) supplies exactly three closed loops and
contributes 3 X K;; and, in general, one represented
a; > 2 times out of the total of N (N — 1)/2 possible
offspring contributes K, b; (b; — 1)/2. Thus the total
contribution to F®2 of individuals resulting from
closed loop pedigrees is K, b; (b; — 1)/2 and of those
resulting from single line pedigrees is

N (N — bi (b: — 1)
K, [,,,NLTJ,), - LZJ},
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where
N (N — 1) ; (b —
2 2 )

=2"a;.

By the regularity of the mating pattern, K, may be
calculated as Fg and thus

1{1 = FS = ¥op = 711 = YEXF,ExG =
1
= ree + 755 + 756 + 750) »
from Figure 3; it follows that, in general,

K, :%7(1,1) -I-%U + F1) =

1 1
=3 gt Ee)],
and thus
_3 oLt ruo o 3
K1_4r +16F +16' (4.1)
Similarly
Ky =Fy =1rpp =77y = YExG, FxH =
1
=7 (rer + 75w -+ 7r¢ + 76H) »
or, in general,
K, = y1,0) (4.2)

Thus, using (4.1) and (4.2), the average degree of
inbreeding at the termination of cycle 2 is

Y e 2 N(N — 1) bi (bi — 1)
F()_F(“)_N(N—n{[ 2 _Z“—z_“‘]

16

(4.3)

One may as well add the restriction N >3 at this

point, since for NV = 2 no selection would be possible;

and for N = 3, selection would either terminate the

population or result in a population of size 2 with the
same difficulties just mentioned.

The minimum inbreeding would occur if all lines

were represented equally (i.e. twice) in which case

lei) =1 for all 4, so that

% 7(1,0)+[Zéib"2;1)_} [%7(1,0)+1i6p(1,0) + i]}

N -3

Fm:&h%ﬂ+&h§ﬂ. (4.4)

5. Relationship to Derivation given by Sprague, et al.
(r952)

If, in the derivation of (4.3) one were to delete the
generation of selfing which is assumed to initiate the
recurrent series (and which is almost always employed
in practice) and if it were assumed that F =» =0
in the source population, then K, = 1/8, and instead
of (4.3),

by (by —
ee. g VBN — 1)
N

F=-1

: JCRY

given by Sprague, et al. (1952). Thus this expression
is valid for only one cycleand only under the restric-
tions noted above.
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6. General Recurrence Formulae for F*+2) and »{#+2)

The derivation in Section 4 was made in terms of
the first and second recurrent cycles in order to
emphasize its relationship to the well-known formula
given by Sprague, et al.; it is obvious, however, that
the argument holds if 1 and 2 are replaced by »# and
n -~ 1 to indicate a general cycle in the selection pro-
cedure. Also, since #" % and F 9 represent the coeffi-
cients of parentage and inbreeding, respectively, in
the source population of the nth cycle of recurrent
selection, they could be expressed as ##*—and F*—1),
inasmuch as the source population of any given cycle
is the population produced by intercrossing the select-
ed population (in other words, the terminal genera-
tion) of the preceding cycle and it is the intercrossed
population for which an inbreeding coefficient is
desired. Thus, for N >3,

(n+2) 2 NIN—1) bilbi = )
Fotd = gv = 2~ 2 o+
b; (b1 - 1) 3 1 n 3
+ Z_T'[Z’( TR +&%]}' (61)

To apply this formula to successive generations, one
must be supplied the values of 7% and F®, recognize
that F = #9 and also have a recurrence formula
for 7ir+1),

A recurrence formula for ##**+Y may be obtained
by observing that the contribution of any two indi-
viduals to the value of »*+1 will be

, 3 1 3
3w 3
Ky=r" + g P+ 3%

if the individuals have a common parent (by defini-
tion of the mating system, any two individuals in the
(n + 1)st cycle may have at most one common
parent); and the contribution will be
K; ="

if they do not have a common parent. Any single
individual has two parents, of which one is a common
parent with a set of N — 2 other individuals and the
second is a common parent with a disjoint set of
N — 2 other individuals. Furthermore, the two indi-
viduals in question are chosen from the N (N — 1)/2
offspring of the parent generation of size N > 3.
Thus, given any two individuals in the (n 4 1)st
cycle of a recurrent selection program (the inter-
crossed generation), the probability that they have
a parent in common is given by

N—(%—_—i) —2(N—2)—1 4
B O P
2
so that
pnt — g o VK=
N1t (N+1))
N Fin) 43
— O It i A .
gy A ) Ny ©.2)

Note that the selection intensity, per se, has no
effect on the inbreeding coefficient, though intense
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selection will increase the total homozygosity; how-
ever the number of lines (or individuals) saved has
a profound effect on the size of the inbreeding coeffi-
cient. Also, since the breeding pattern calls for all
possible intercrosses of the selected generation, the
effect of selection upon the coefficient of parentage
occurs only through the contribution of F to K.

7. The Homozygosity Index

Let H denote the probability that two genes at
a given locus in an individual are homozygous (either
by descent or in state). Then H is an index of total
homozygosity and 1 — H an index of total hetero-
zygosity within an individual. Let ¢ denote the prob-
ability that two genes randomly chosen from a given
locus in two individuals are identical either by descent
or in state. Ior a given individual or in a given po-
pulation, these quantities may be calculated (or
estimated) from observation of the genotype or from
known (or estimated) gene frequencies.

The degree of inbreeding at any given cycle in
a population under selection may not reflect the
degree of homozygosis because the extent of the
homogeneity in the source population is unknown,
because selection has accelerated the approach to-
ward genetic fixation, or because inbreeding depres-
sion is working against the trend of artificial selection
so that the ““more desirable’”” phenotypes are perhaps
sterile or less viable. Thus if the experimenter relies
upon the degree of inbreeding to yield a measure of

Coefficients of Inbreeding and Homozygosity in Recurrent Selection

333

expected variability upon which to base estimates of
future selection effectiveness, his experimental re-
sults may deviate considerably from his predictions.
In other words (see Section 1) the calculation of
inbreeding coefficients may well be misleading, as
observed by Kempthorne and TIalconer. Specifi-
cally, the measures needed are H, an index of total
homozygosity within the individuals of the breeding
population, and ¢, an index measuring the genetic
similarity among individuals in a breeding popula-
tion.

Given H and ¢ in a source population, the change
in these quantities from one generation to the next is
calculable in exactly the same manner as F and 7 for
any given breeding pattern. Thus all of the develop-
ment of Sections 4 and 0, specifically (6.1) and (6.2},
holds if F is replaced by H and 7 by ¢, yielding measu-
res of the homozygosity in a population under selec-
tion; of course H >> F and ¢ > 7 in all cases. It would
be these indexes which would be of value to the plant
breeder in evaluating the variability to be expected
in any generation of a recurrent selection breeding
program. H® and #° may be estimated from known
gene frequencies in the source population; and in the
case of an open-pollinated source population, prior
to artificial selecton, H(® = #O,

8. Application to Special Cases

In Table2 are outlined the numerical results
obtained from (6.1) and (6.2) if one assumes equal

Table 2. Progress of populations of varying sizes, varying initial inbreeding coefficients, and varying initial coefficients
of parentage thvough twenty-five cycles of recurvent selection, assuming minimum inbreeding

Initial Conditions

Values of the Panmictic Index (P = 1 — F) at the End of the Indicated Recurrent Cycle

y0)  FO) N 1 2 3 4 5 6 7 8 10 15 207 25
10 1.00 .96 .89 .83 .78 .73 .68 .64 .55 .39 .28 .20

15 1.00 .97 .93 .89 .84 .81 .77 .73 .67 .53 42 .33

25 1.00 .98 .96 .93 .90 .88 .85 .83 .78 .68 .59 .51

0 0 100 1.00 1.00 .99 .98 .97 .97 .96 .95 .94 .90 .87 .84
10 .75 72 .68 .63 .59 .55 .51 .48 42 .30 21 A5

15 .75 .73 .70 .67 .64 .61 .58 .55 .50 .40 .32 .25

25 .75 .74 72 .70 .68 .66 .64 .62 .59 .51 44 .38

25 0 100 .75 .75 74 74 .73 .73 .72 72 .70 .68 .65 .63
10 .25 .25 .24 .22 .21 19 18 A7 15 A1 .08 .05

15 .25 .25 .24 .23 .22 .21 .20 49 .18 A4 A1 .09

25 .25 .25 .25 .24 .23 .23 .22 21 .20 A7 A5 13

75 0 100 .25 .25 .25 .28 .25 .24 .24 .24 24 .23 22 .21
10 1.00 .95 .89 .83 .78 72 .68 .63 .55 .39 28 .20

15 1.00 .97 .92 .88 .84 .80 i .73 .64 .53 42 .33

25 1.00 .98 .05 .03 .90 .87 .85 .83 .78 .67 .58 .51

0 .25 100 1.00 1.00 .99 .98 .97 .97 .06 .95 .04 .90 .87 .84
10 1.00 .95 .88 .82 77 .72 .67 .62 .54 .39 .20 .20

15 1.00 .97 .92 .87 .83 .80 .76 .73 .66 .52 41 .33

25 1.00 .98 .95 .92 .90 .87 .85 .82 .78 .67 .58 .50

0 .75 100 1.00 1.00 .99 .98 .97 .97 .96 .95 .94 .90 .87 .84
10 .50 .48 45 42 .39 .36 .34 .32 .28 .20 14 .10

15 .50 .49 46 44 42 .40 .38 .37 .33 .26 21 A7

25 .50 49 48 46 45 44 43 41 .39 .34 .29 .25

.50 .50 100 .50 .50 .49 49 49 48 48 48 .47 45 44 42
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Table 3. Progress of populations of varying sizes, varying initial inbveeding coefficients, and varying initial coefficients
of parentage through twenty-five cycles of curvent selection, assuming maximum inbreeding

Tnitial Conditions

Values of the Panmictic Index (P = 1 — F) at the End of the Indicated Recurrent Cycle

6 7 8 10 15 20 7 25

(o) FoO) N 1 2 3 4 5
10 1.00 .85 .80 .74 .69 .64 .60 .56 48 .34 .24 A7
15 1.00 .84 80 .76 72 .69 .65 .62 .56 44 34 .27
25 1.00 .83 .31 77 .75 .73 71 .68 .64 .55 47 41
0 0 100 1.00 .82 .81 .79 .79 .78 77 77 .76 73 .70 .67
10 .75 .65 .60 .56 52 48 45 42 .36 .26 A8 13
15 .75 .64 .60 .57 .54 .52 49 47 42 .33 .26 .20
25 .75 .64 .61 .58 .57 -55 .53 .52 .50 42 .36 31
.25 0 100 75 .63 .61 .60 .59 .59 .58 .58 .57 .55 52 .50
10 25 .25 21 .20 18 A7 16 15 13 .09 06 .04
15 25 .25 .21 .20 49 A8 17 16 A5 A2 09 . .07
25 .25 .25 .21 .20 19 19 18 A8 16 14 A2 .1
75 0o 100 .25 .25 .20 .20 .20 .20 .20 19 .19 48 A8 17
10 1.00 .84 .79 73 .68 .64 .59 .55 .49 .34 .24 A6
15 1.00 .82 .80 .75 72 .68 .65 .62 .56 44 .34 .27
25 1.00 .81 .80 77 .75 .73 .70 .68 .64 .55 47 41
6] .25 100 1.00 .80 .81 .79 .79 .78 77 77 .76 .73 .70 .67
10 1.00 .81 .78 72 .68 .63 .59 .55 47 .33 .23 16
15 1.00 .80 .79 .75 .71 .68 .65 .61 .58 43 .34 27
25 1.00 .78 78 77 .75 .72 .70 .68 .64 .55 47 40
0 .75 100 1.00 .77 .81 .79 .79 .78 77 77 .75 .73 .70 .67
10 .50 42 40 .37 .34 .32 .30 .28 .24 A7 A2 08
15 .50 42 .40 .38 .36 .34 .33 .31 .28 .22 A7 A3
25 .50 43 40 .39 .38 .38 .36 .35 .32 .28 .24 .20
.50 .50 100 .50 41 41 .40 .39 .39 .39 .38 .38 .36 .35 .34
10 representation of all lines (i.e. b, = 2 for all ¢} and
1 allows the parameters N, @, and F© to vary and
ol N el then traces the progress of the degree of panmixia
' ‘ | through twenty-five cycles (50 generations) of RS.
— . . . R
b Maintenance of a constant population size (by selec-
08— - T J tion following the selfing phase) is assumed in the
Pl method by which Table 2 is generated. The dramatic
07f - R effects of population size (N) and initial coefficient of
=TT parentage () are evident from Table2 and of
agl- Z1 I O R these two, 79 is the more important; the size of the
L Lo inbreeding coefficient in the source population (F)
05 - 7/ ’ P has little effect on the panmictic index at the ith
10 1 ] 1 .
S o e N0 recurrent cycle (P#). These effects are seen in grea-
——- 15 ter detail in the graphs of Iligure 4, in which F® is
04 T assumed to be zero. Under the restriction that b, = 2
| 1 1 for all 4, (6.1) and (6.2) reduce to
03 — S— —— et ——
|~ 2 — 2 3 m . Lpm 3V N T3
‘ J z B VAT 16) Nt
o2 ; e . /;/4‘7 T ;md
P | . .
i /// ' | (n 1) — ,W]\' (1) ;]‘(nﬁ)_j;i,
IR] S A S — el ’ it (N4 1)’
; - ; i \
Y //#' L ‘ ‘ i which were used to obtain the results of Table 2 and
T S T O L Figure 4.

Cycle (n}

TFig. 4. Comparisons of the effects of varying population sizes

(N) and varying initial coefficients of parentage (#(0)) on the

progress of a population under recurrent selection. F(0) =0
is assumed

Maximum inbreeding results when, at each cycle,
one line is represented N — 1 times, N — 3} lines
are each represented only once, and two lines are
represented twice. Table 3 shows the progress of the
panmictic index under the same assumptions as in
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Table 2 except that a minimum inbreeding selection
pattern is replaced by one of maximum inbreeding.
Tables 2 and 3 could be used to approximate inbreed-
ing coefficients in RS systems for which their basic
assumptions were applicable. The last section of the
tables, for which #© = F© = 5, could be used to
approximate the progress of 1 — H in a breeding
population.
9. Conclusions

General recurrence formulae for the calculation of
the inbreeding coefficient and the coefficient of pa-
rentage in the (# 4 2) nd cycle of a RS mating pat-
tern are developed for the one-locus, two-allele case.
These formulae involve no restrictions as to the initial
values 7 or F or as to the number of times each
line is represented in the progeny at any stage of
reproduction; and they assume only a basic RS mating
scheme.

IFor the special case in which

@ n=0

(i) 7V = F = g;

(iii} the wusually-employed initial generation of
selfing is ignored; so that the mating cycle involves
only select-intercross-self-select-intercross;

(iv) all selected lines are represented equally in the
progeny of the final intercrossed generation, the
formula for I® reduces to that given by Sprague,
el al. (1952).

From the derivation, it is evident that substituting
random mating for intercrossing would result in
decreases in panmixia at each successive cycle.

It is pointed out in Sections 1 and 7 that when
selection is present, an overall index of homozygosity
(H) or an overall index of heterozygosity (1 — H)
would be more meaningful than F to use as an indi-
cation of possible future selection progress and a me-
thod of calculation of this index is outlined, as well as
that of calculating an index ¢ measuring the relation-
ship between individuals in terms of the probability
of genes identical by descent or in state at a given
locus for two individuals.

From computer-simulated populations the progress
of populations assuming both minimum and maximum
mbreeding is investigated with varying initial coeffi-
cients of relationship, varying initial degrees of ho-
mozygosity by descent, and varying initial sample
sizes; and it is observed that the contribution of #©
to the degree of panmixia after several breeding
cycles far outweighs the contribution of F©. If only
a few cycles of RS are anticipated (where one cycle
represents from two to three years in a breeding
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program}, the initial sample size actually makes very
little difference in the degree of panmixia, expecially
if 7 is close to zero. The tables presented could be
used to estimate minimum and maximum inbreeding
coefficients in practice, given populations which con-
form to the given assumptions.

Zusammenfassung

I'tir Selektionsprogramme, die durch aufeinander-
folgende Selbstungs-Selektions-Kreuzungs-Zyklen
(wie z. B. rekurrente Selektion oder reziproke rekur-
rente Selektion) charakterisiert sind, werden all-
gemeine Rekurrenzformeln zur Berechnung von
Inzucht- und Homozygotie-Koeffizienten in jedem
Zyklus entwickelt.

Die Formel fiir den Inzuchtkoeffizienten stellt eine
Verallgemeinerung eines von Sprague et al. (1952)
erhaltenen Ergebnisses dar.

Es wird gezeigt, daBl der “‘coefficient of parentage”
der Ausgangspopulation ebenso wie die Populations-
groBe einen nachhaltigen Einfluf auf den Inzucht-
koeffizienten der folgenden Zyklen haben. Die
Beziehung beider Typen von Koeffizienten und ihre
Bedeutung fiir die praktische Arbeit werden disku-
tiert.
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